Steel Conductors (SC/GZ \& SC/AC)

Galvanised steel conductors manufactured to AS 1222.1
SC/GZ

Stranding andwire diameter	Nominal Overall diameter	Cross sectional area	Approx mass	Minimum breaking load	Modulus of elasticity	Coefficient of linear expansion	DC resist at $20^{\circ} \mathrm{C}$	AC Resist at 50 Hz $75{ }^{\circ} \mathrm{C}$	Continuous current carrying capacity. A					
									Winter night			Summer noon		
									$\begin{aligned} & \text { still } \\ & \text { air } \end{aligned}$	$1 \mathrm{~m} / \mathrm{s}$ wind	$\begin{aligned} & 2 \mathrm{~m} / \mathrm{s} \\ & \text { wind } \end{aligned}$	$\begin{aligned} & \text { still } \\ & \text { air } \end{aligned}$	$\begin{aligned} & 1 \mathrm{~m} / \mathrm{s} \\ & \text { wind } \end{aligned}$	$\begin{aligned} & 2 \mathrm{~m} / \mathrm{s} \\ & \text { wind } \end{aligned}$
No/mm	mm	mm^{2}	kg/km	kN	GPa	$\times 10-6 /{ }^{\circ} \mathrm{C}$	ת/km	ת/km						
3/2.00	4.3	9.43	74	11.7	189	11.5	20	25	22	39	46	18	35	42
3/2.75	5.9	17.8	140	22.2	189	11.5	11	14	32	56	64	26	52	59
7/2.00	6.0	22.0	173	26.0	187	11.5	8.7	11	33	63	72	30	57	67
7/2.75	8.3	41.6	328	49.0	187	11.5	4.6	5.7	56	93	109	43	83	103
7/3.25	9.8	58.1	458	68.7	187	11.5	3.3	4.1	69	115	134	52	105	122
7/3.75	11.3	77.3	609	91.3	187	11.5	2.5	3.1	83	136	160	63	122	144
19/2.00	10.0	59.7	473	70.5	184	11.5	3.2	4.0	72	118	136	55	106	125
19/2.75	13.8	113	894	133	184	11.5	1.7	2.1	108	173	203	78	154	182
19/3.25	16.3	158	1250	186	184	11.5	1.2	1.5	138	216	252	96	188	224

Aluminium-clad steel conductors manufactured to AS 1222.2
SC/AC

Stranding andwire diameter	Nominal Overall diameter	Cross sectional area	Approx mass	Minimum breaking load	Modulus of elasticity	Coefficient of linear expansion	DC resist at $20^{\circ} \mathrm{C}$	AC Resist at 50 Hz $75^{\circ} \mathrm{C}$	Continuous current carrying capacity. A					
									Winter night			Summer noon		
									$\begin{aligned} & \text { still } \\ & \text { air } \end{aligned}$	$1 \mathrm{~m} / \mathrm{s}$ wind	$2 \mathrm{~m} / \mathrm{s}$ wind	$\begin{aligned} & \text { still } \\ & \text { air } \end{aligned}$	$1 \mathrm{~m} / \mathrm{s}$ wind	$2 \mathrm{~m} / \mathrm{s}$ wind
No/mm	mm	mm^{2}	kg/km	kN	GPa	$\times 10-6 /{ }^{\circ} \mathrm{C}$	Ω / km	Ω / km						
3/2.75	5.9	17.82	118	22.7	159	12.9	4.80	5.74	49	85	102	42	79	94
3/3.00	6.5	21.21	141	27.0	159	12.9	4.02	4.83	56	95	108	45	86	106
3/3.25	7.0	24.89	165	31.6	159	12.9	3.42	4.12	62	106	125	48	94	115
3/3.75	8.1	33.12	220	39.3	159	12.9	2.58	3.08	73	127	145	58	115	137
7/2.75	8.3	41.58	277	50.1	157	12.9	2.06	2.45	84	142	163	66	126	151
7/3.00	9.0	49.48	330	59.7	157	12.9	1.73	2.05	93	155	184	71	142	163
7/3.25	9.8	58.07	387	69.9	157	12.9	1.47	1.77	105	175	200	79	159	185
7/3.75	11.3	77.28	515	86.9	157	12.9	1.11	1.34	126	208	238	95	193	219
7/4.25	12.8	99.33	662	105	157	12.9	0.864	1.06	152	245	279	112	215	255
19/2.75	13.8	112.9	755	136	155	12.9	0.764	0.912	162	263	304	118	236	273
19/3.00	15.0	134.3	899	162	155	12.9	0.642	0.767	185	293	338	133	254	307
19/3.25	16.3	157.6	1060	189	155	12.9	0.545	0.650	206	328	373	144	281	338
19/3.75	18.8	209.8	1410	236	155	12.9	0.411	0.491	248	385	445	175	336	402
19/4.25	21.3	269.6	1800	286	155	12.9	0.320	0.382	290	454	520	205	394	468

Note: Current ratings are based to the following conditions

- Conductor temperature rise above ambient of $40^{\circ} \mathrm{C}$
- Ambient air temp. of $35^{\circ} \mathrm{C}$ for summer noon or $10^{\circ} \mathrm{C}$ for winter night
- Direct solar radiation intensity of $1000 \mathrm{~W} / \mathrm{m}^{2}$ for summer noon or zero for winter night
- Diffuse solar radiation intensity of $100 \mathrm{~W} / \mathrm{m} 2$ for summer noon or zero for winter night
- Ground reflectance of 0.2
- Emissivity of 0.5 for rural weathered conductor or 0.85 for industrial weathered weathered conductor
- Solar absorption coefficient of 0.5 for rural weathered conductor or 0.85 for industrial weathered conductor Cross sections not to scale

